Incertitudes et précision des mesures

Notion classique d'erreur et d'incertitude

La mesure d'une grandeur G donne une valeur g , qui diffère de la valeur exacte G d'une quantité δg, inconnue. **Sg est l'erreur de mesure** inconnue en signe et en valeur absolue.

L'expérimentateur cherche , plus ou moins empiriquement , à estimer une limite supérieure ∆g de la valeur $g - \Delta g \le G \le g + \Delta g$ absolue de $\delta g.La$ valeur exacte de la grandeur G est donc Et on annoncera $G = g \pm \Delta g$

Et on annoncera
$$G = g \pm \Delta g$$

Le rapport $\Delta g/g$ désigne l'incertitude relative

Nombre de chiffre significatifs

Le calcul de l'incertitude absolue Δg sur la valeur d'une grandeur permet de limiter le nombre de chiffres significatifs de la valeur numérique obtenue.

Le dernier chiffre donné (le plus à droite) doit être le premier entaché d'erreur.

II. Détermination de l'incertitude absolue ∆g

1) mesure directe:

On estime l'incertitude de lecture, en fonction du matériel et des conditions de la manipulation :

Ex :repérage de la position d'une image sur un banc d'optique :

- estimer la latitude de « mise au point » par ex 1 mm
- -estimer l'incertitude sur la lecture du banc 1 mm, ou 1/10 mm si le pied dispose d'un vernier.
- on obtient alors, en additionnant, l'incertitude sur la mesure.

2) mesure indirecte

> Hypothèse: Le plus souvent une grandeur G n'est pas mesurable directement. Néanmoins cette grandeur G est fonction de grandeurs X, Y, ... mesurables dont on connaît les incertitudes absolues Δx , Δy ... Considérons le cas d'une fonction g = f(x y) de deux variables

> Recherche de l'incertitude absolue Δg

Les incertitudes Δx et Δy sont suffisamment petites par rapport à x et y, pour être assimilées à de petites variations, ce qui permet l'utilisation du calcul différentiel Considérons le cas d'une fonction g = f(x, y) de deux variables

$$g = f(x,y) \implies dg = \frac{\partial f}{\partial x} \Big|_{y} dx + \frac{\partial f}{\partial y} \Big|_{x} dy$$

.Cependant les incertitudes absolues sont connues seulement en valeur absolue; il faut donc à la fin du calcul différentiel, après avoir factorisé tous les termes relatifs à une même source d'erreur, faire la somme des valeurs absolues de chaque terme, en assimilant dx à Δx etc...

$$\Delta g = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y$$

> Différentielle logarithmique

Pour une grandeur $g = k x^a y^b / z^c$, il est plus rapide de calculer : $\ln g = \ln k + a \ln x + b \ln y - c \ln z$

$$Donc: d(\ln g) = \frac{dg}{g} = a\frac{dx}{x} + b\frac{dy}{y} - c\frac{dz}{z} \Rightarrow \frac{\Delta g}{|g|} = a\frac{\Delta x}{|x|} + b\frac{\Delta y}{|y|} + c\frac{\Delta z}{|z|}$$

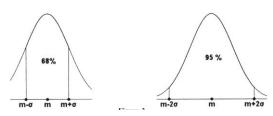
III. Détermination statistique des évaluations de type B (= on a fait une seule mesure)

La méthode exposée dans le II conduit à surévaluer les incertitudes, car on cherche un intervalle dans lequel il y a 100% de chances de trouver le résultat.

On préfère aujourd'hui utiliser des données statistiques qui permettent d'évaluer l'incertitude à un niveau de confiance fixé.

Modélisation des erreurs par un gaussienne

Il est le plus souvent bien vérifié expérimentalement que si on refait N fois la même mesure, pour laquelle il existe une incertitude aléatoire, on obtient des mesures qui se répartissent selon une courbe de Gauss (appelée aussi « loi normale »):



La probabilité d'obtenir la valeur x est P(x)

$$P(x) = \frac{1}{u\sqrt{2\pi}} \exp(-\frac{(x-m)^2}{2u^2}) \quad \text{avec} \quad P(m-u \le x \le m+u) = 0.68 - P(m-2u \le x \le m+2u) = 0.95$$

On peut cependant utiliser ces résultats statistiques pour estimer u (= écart-type), lorsque nous faisons, comme c'est le cas en TP, UNE seule mesure de la grandeur.

Mise en œuvre en TP:

- 1. Si on lit G directement sur un appareil, il faut estimer l'écart-type u, à partir des données constructeur et/ou de l'expérience...
- 2. Si G est le résultat de la combinaison de plusieurs lectures sur des instruments, on calcule u_G par « propagation des incertitudes »
- 3. On calcule ensuite l'incertitude élargie au taux de confiance voulu : On prendra un taux de confiance de 95% : $\underline{\mathbf{U}}_{95} = \mathbf{2} \mathbf{u}$

on annoncera donc = $G = g \pm U_{95}(G)$

Détermination de u

1) Cas d'une lecture directe :

a) lecture de graduations : appareil à cadran, à aiguille, règle ,burette

L'incertitude-type est estimée à ... $u_{lecture}(x) = \frac{1 \text{ graduation}}{2\sqrt{3}} \approx 0.3 \text{ graduation}$

b) appareil donné avec sa « classe ou précision » : appareil de mesure numérique, verrerie jaugée

Le constructeur fournit généralement précision = z% de la lecture $\pm p$ digits Faute d'indications du constructeur, on assimile cette précision à l'incertitude élargie et on a

2) Propagation des incertitudes

Au lieu d'écrire pour
$$g = f(x_1, x_2,)$$
 ... $\Delta g = \sum_{i} \left| \frac{\partial f}{\partial x_i} \right| \Delta(x_i)$. ; on écrira $u(g) = \sqrt{\sum_{i} (\frac{\partial f}{\partial x_i} u(x_i))^2}$.

Rmq - par rapport au calcul « classique », on restreint l'intervalle ce qui traduit le fait que la probabilité d'avoir « le pire » pour plusieurs variables est faible!

- la présence de carrés réduit l'impact des mesures les plus précises : souvent, un seul terme est prépondérant dans l'incertitude => le calcul est finalement plus simple !

Somme:
$$g = \sum \alpha_i x_i \implies u(g) = \sqrt{\sum_i \alpha_i^2 u(x_i)^2}...$$
 produit: $g = \prod_i x_i^{\alpha_i} \implies \left(\frac{u(g)}{g}\right) = \sqrt{\sum_i \alpha_i^2 \left(\frac{u(x_i)}{x_i}\right)^2}.$

-les formules sont valables avec les incertitudes élargies U, (à condition bien sur de les prendre toutes au même degré de confiance)

IV. Régression linéaire

1) Problème:

On cherche à savoir dans quelle mesure des données expérimentales s'accordent avec une loi linéaire du type y = a+bx. On cherche également une estimation des paramètres a et b et on souhaite connaître la précision de cette estimation.

On supposera ici que les <u>incertitudes sur x sont négligeables</u> devant celles sur y (on peut très souvent se ramener `a cette situation car il est très fréquent que les incertitudes relatives sur une variable soient beaucoup plus faibles que les incertitudes relatives sur l'autre).

On dispose donc d'un tableau de n mesures (x1, y1),(x2, y2),..., (xn, yn) et éventuellement pour chacune de ces mesures, de l'incertitude associée à la mesure de y.

2) LA THEORIE : Comment calculer-les coefficients a et b et leurs incertitudes ?

La méthode utilisée est celle dite des moindres carrés :

Pour chaque point (x_i, y_i) , on calcule le carré de l'écart entre ce point et la droite modèle y=a+bx_i

Soit
$$(y_i - (a + bx_i))^2$$
, on somme ces expressions pour tous les points $J = \sum_{\text{points exp}} (y_i - (a + bx_i))^2$

Puis, on cherche à minimiser cette somme par ajustement des paramètres a et b

Le minimum de J(a,b) est défini par l'annulation des dérivées partielles de J $\frac{\partial J}{\partial a} = 0$ et $\frac{\partial J}{\partial b} = 0$

Ce qui conduit à (ce calcul est facile faites le !)

$$b = \frac{n\sum_{1}^{n} x_{i} y_{i} - \sum_{1}^{n} x_{i} \sum_{1}^{n} y_{i}}{n\sum_{1}^{n} x_{i}^{2} - (\sum_{1}^{n} x_{i})^{2}} = \frac{\overline{xy - x \cdot y}}{\overline{x^{2} - x^{2}}} \text{ et } a = \frac{a = \frac{-2 - - - \overline{y}}{x^{2} - x \cdot x \cdot y}}{\overline{x^{2} - x^{2}}}$$

Incertitudes sur les coefficients a et b

On montre alors que

$$u_{a} = u_{y} \sqrt{\frac{\frac{-2}{X}}{\frac{x^{2}}{x^{2}} - \frac{-2}{X}}} \quad et$$

$$u_b = u_y \sqrt{\frac{n}{\overline{x^2} - x^2}}$$

Si on a fourni l'incertitude expérimentale u_{yexp} , la formule prend alors $u_y = u_{yexp}$

Si on n'a pas indiqué les incertitudes sur les valeurs de y , alors $u_y = uy^{stat}$:

L'incertitude sur y est estimée de façon statistique :

En effet, si chaque mesure yi se distribue autour de la valeur vraie a+bxi avec la même incertitude uy les écarts yi –(a+bxi) se distribuent autour de la valeur nulle avec une incertitude uy.

De la répartition des points de mesure autour de la droite d'équation y = a + bx, on peut donc remonter à l'incertitude uy sur les mesures de y.

On peut montrer que la meilleure estimation de cette incertitude est $u_{ystat} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - (a + bx_i))^2}$

3) LA PRATIQUE : comment faire afficher les coefficients a et b et leurs incertitudes avec Excel

Pour faire le graphique et afficher la courbe de tendance et son équation

Sélectionner les deux colonnes x_i et y_i Insertion /Graphique/nuage de points

Clic droit sur un des points/ Ajouter une courbe de tendance/ et cocher afficher l'équation sur le graphique Ou bien Outils de Graphique/Disposition/Analyse/Courbe de tendance

Pour faire afficher l'équation et les incertitudes sur a et b

On utilise la fonction DROITEREG

Syntaxe: ex: =DROITEREG(B3:B8;A3:A8;VRAI;VRAI)

Ici B3:B8 = colonne des y ; A3:A8= colonne des x ; VRAI= il y a une constante a,

Le dernier « Vrai » permet d'afficher un certain nombre de données statistiques .

Taper la formule dans une case, valider.

Puis sélectionner cette cellule et les cellules voisines (matrice 3lignes*2colonnes)

Faire F2 puis CTRL MAJ ENTER

S'affichent alors

b	(pente)	a (ordonnée à l'origine)
u_b	(incertitude sur b)	u _a (incertitude sur a)
r	(coefficient de corrélation)	u _y (incertitude sur y)

Sous libreoffice

Dans une cellule taper la formule = droitereg (colonne des y ; colonne des x ; vrai ; vrai). Surtout ne pas faire entrer mais taper simultanément Ctrl Maj Entrée. Le tableau suivant s'affiche

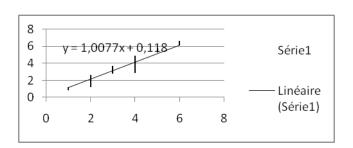
Remarque complémentaire afficher des barres d'erreurs

Outils de Graphique/Disposition/Analyse/Barres d'erreurs permet d'ajouter les <u>barres d'erreurs</u> sur le grahique (avec bug pour écarttype ?)

Les barres d'erreurs peuvent ne pas être les mêmes sur chaque valeur :

Choisir « marge d'erreur /Personnalisé , et sélectionner des colonnes donnant les erreurs pour les différents points

Χ	У	"+∆y"	"-∆y"		
1	1	0,2	0,2		
2	2,2	0,4	1		
3	3,4	0,3	0,6		
4	3,87	1	1		
5	5,3	0,5	0		
6	6,1	0,5	0		



DROITEREG permet aussi des optimisations polynomiales (voir aide de la fonction) LOGREG permet de même de déterminer : $y = b*m^x$.

V. Evaluations de type A

= Lorsqu'on effectue une série de mesures dans des conditions identiques. (exemple : on effectue plusieurs pesées ou dosages de la même solution ...)

La <u>mesure</u> est la moyenne de l'échantillon $x = \frac{1}{N} \sum_{i} x_{i}$

L'incertitude-type est estimée p**a**r
$$u = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i} (x_i - x)^2}$$

L'incertitude élargie au niveau de confiance 95%, tient compte du nombre de points N Par l'intermédiaire d'un coefficient dit « de Student »

$$U_{95} = t_{95} * u$$

Les coefficients de Student à 95% sont les suivants

Ns	2	3	4	5	6	7	8	10	15	20	100	∞
t ₉₅	12.7	4,3	3,2	2,8	2,6	2,5	2,4	2,3	2,15	2,1	1.98	1.96

Le résultat final s'écrit donc $x \pm U_{95}(x)$ unité

Exemple avec EXCEL

